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“There's nothing as practical as a good theory”
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“There's nothing as practical as a good theory.”

“There's nothing as theoretical as good practice.”
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Introduction



“There's nothing as practical as a good theory.”

“There's nothing as theoretical as good practice.”

“Sometimes a practical solution is good enough.”
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Introduction



• RDF is a useful way to store and process information that
fits into the RDF paradigm.

• Lots of information does fit into that paradigm.

• RDF can be serialized in XML.

• XSLT is a useful way to process XML.

But...

• Processing RDF with XSLT is difficult and tedious.
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Observations



• XSLT (and XPath) are designed to operate on XML documents.
XML documents are trees.

• A collection of RDF statements is a directed graph, but it is
not generally a tree.

• Templates designed to transform RDF often stumble over
this missmatch at the data model level.

• But RDF has an XML serialization, doesn't it?
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The Problem



• Nodes in a tree have only one parent.

• Nodes in a graph may have several “parents”.

• If node identity is to be preserved:

• Nodes must be treated in two different ways.

• It boils down to: instantiate once.

• Reference elsewhere.
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What about RDF Serialization?



Consider this small graph:

And how it might be serialized:

<A>
  <B>
    <C>
      ??? What do you do about A?

8 / 29http://www.sun.com/

  
  

Serialization Example



<A node="n1">
  <B node="n2">
    <C node="n3">

<A node="n1"/>
      <E node="n4">
        ...

• Graph: B/C/A/* = B

• Tree: B/C/A/* = empty node set
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Serialization Example (Continued)



• Know your serialization tool. There are several flavors and
recent RDF changes introduce at least one more.

• Use keys and conditional logic in your templates to identify
and correctly process nodes that are inline and nodes that
are referenced.

• In the general case, you need a choose statement for each
node, one to test for @rdf:resource and one to test for
@rdf:about.

Difficult and tedious.
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Working With Serialized RDF



There's no single, right way to do the serialization.

• Any node could be the “root” of the tree.

• Nodes must be instantiated exactly once.

• Which nodes are “new” and which are “duplicates” depends
on where you start and how you build the tree.
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There's More Than One Way To Do It



• Let's you start at any node in the RDF graph.

• Builds a serialized representation of that part of the graph
(with a few user-tuneable parameters).

• Returns the tree as a document so that you can apply XSLT
to it.

In short, RDF Twig lets you serialize interesting parts of the
graph on the fly.
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RDF Twig



• RDF Twig is implemented as a set of (Java) XSLT extension
functions and elements.

• The current implementation is built on top of the Jena RDF
toolkit.
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RDF Twig Implementation



Consider this graph:

How can this be serialized (starting at A)?
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How to Serialize
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Serialize Breadth First
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Serialize Depth First
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Serialize Breadth First Deep
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Serialize a Leaf



twig A shallow breadth-first tree.

dftwig A shallow depth-first tree.

branch A deep tree.

leaf A “tree” with no instantiated children.
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RDF Twig Terminology



Load the model:

  <xsl:variable name="model"
    select="rt:load('diagrams/bgraph.rdf')"/>

Grab a node:

  <xsl:variable name="A"
    select="rt:resource('http://uri/for/A')"/>

Turn the results into a tree:

  <xsl:variable name="tree" select="rt:twig($A)"/>
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RDF Twig in Action



At this point, $tree contains an XML document that can be
queried and transformed with XSLT like any other input docu-
ment.

  
  

RDF Twig in Action (Continued)



Construct a property:

  <xsl:variable name="label"
    select="rt:property('http://example.com/graph#', 'label')"/>

Find some nodes:

  <xsl:variable name="findResults"
    select="rt:find($label, 'D')"/>

Turn the results into a tree:

  <xsl:variable name="tree"
    select="rt:twig($findResults)/twig:result"/>
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RDF Twig in Action



• load() (and store()) RDF graphs.

• resource() gets (or creates) a single resource.

• property() gets (or creates) a property.

• twig(), dftwig(), branch(), leaf() get parts of a
graph.
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RDF Twig Functions



• find() finds resources (that have a property).

• get() finds resources (that are a property).

• filter(), filterNot() trim a set of resources.

• union(), intersection(), difference() perform
the obvious boolean operations on sets of resources.
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RDF Twig Functions (Continued)



RDF Twig now supports RDQL:

<xsl:variable name="a">
  <rq:rdql return="a">
SELECT ?a, ?b
WHERE  (?a, &lt;http://somewhere/pred1&gt;, ?b)
AND    ?b < 5
  </rq:rdql>
</xsl:variable>

This is a result tree, so you need a node-set extension to ac-
cess it.
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RDQL Support



Wouldn't it be better to extend XPath (XSLT?) to operate over
graphs?

Yes, probably. But RDF Twig satisfies an immediate need: to
access RDF graphs in XSLT stylesheets today.
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Isn't There a Better Way?



<xsl:variable name="contactType"
     select="rt:resource('http://nwalsh.com/rdf/palm#Contact')"/>

<xsl:variable name="allContacts"
     select="rt:twig(rt:find($rdf:type,
                     $contactType),1)/twig:result"/>

  ...

<xsl:for-each select="$allContacts">
  <xsl:apply-templates
       select="rt:leaf(string(@rdf:about))" mode="Contact"/>
</xsl:for-each>
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A “Real” Example



• Deep trees can be prohibitively large.

• “Serialize on the fly” is conceptually different.

• Trying to build trees that are “just big enough” sometimes
introduces the inline/reference problem again.

• Function dispatch oddness in the current implementation.
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Warts



• RDF Twig: http://rdftwig.sourceforge.net/

• Saxon: http://saxon.sourceforge.net/

• Xalan Java: http://xml.apache.org/xalan-j/

• Jena: http://www.hpl.hp.com/semweb/jena
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