
RDF Twig
Accessing RDF Graphs in XSLT

Version 1.0

http://www.sun.com/Norman Walsh

Extreme Markup Languages
04 - 08 August, 2003

“There's nothing as practical as a good theory”

2 / 29http://www.sun.com/

Introduction

“There's nothing as practical as a good theory.”

“There's nothing as theoretical as good practice.”

3 / 29http://www.sun.com/

Introduction

“There's nothing as practical as a good theory.”

“There's nothing as theoretical as good practice.”

“Sometimes a practical solution is good enough.”

4 / 29http://www.sun.com/

Introduction

• RDF is a useful way to store and process information that
fits into the RDF paradigm.

• Lots of information does fit into that paradigm.

• RDF can be serialized in XML.

• XSLT is a useful way to process XML.

But...

• Processing RDF with XSLT is difficult and tedious.

5 / 29http://www.sun.com/

Observations

• XSLT (and XPath) are designed to operate on XML documents.
XML documents are trees.

• A collection of RDF statements is a directed graph, but it is
not generally a tree.

• Templates designed to transform RDF often stumble over
this missmatch at the data model level.

• But RDF has an XML serialization, doesn't it?

6 / 29http://www.sun.com/

The Problem

• Nodes in a tree have only one parent.

• Nodes in a graph may have several “parents”.

• If node identity is to be preserved:

• Nodes must be treated in two different ways.

• It boils down to: instantiate once.

• Reference elsewhere.

7 / 29http://www.sun.com/

What about RDF Serialization?

Consider this small graph:

And how it might be serialized:

<A>

 <C>
 ??? What do you do about A?

8 / 29http://www.sun.com/

Serialization Example

 <B node="n2">
 <C node="n3">

 <E node="n4">
 ...

• Graph: B/C/A/* = B

• Tree: B/C/A/* = empty node set

9 / 29http://www.sun.com/

Serialization Example (Continued)

• Know your serialization tool. There are several flavors and
recent RDF changes introduce at least one more.

• Use keys and conditional logic in your templates to identify
and correctly process nodes that are inline and nodes that
are referenced.

• In the general case, you need a choose statement for each
node, one to test for @rdf:resource and one to test for
@rdf:about.

Difficult and tedious.

10 / 29http://www.sun.com/

Working With Serialized RDF

There's no single, right way to do the serialization.

• Any node could be the “root” of the tree.

• Nodes must be instantiated exactly once.

• Which nodes are “new” and which are “duplicates” depends
on where you start and how you build the tree.

11 / 29http://www.sun.com/

There's More Than One Way To Do It

• Let's you start at any node in the RDF graph.

• Builds a serialized representation of that part of the graph
(with a few user-tuneable parameters).

• Returns the tree as a document so that you can apply XSLT
to it.

In short, RDF Twig lets you serialize interesting parts of the
graph on the fly.

12 / 29http://www.sun.com/

RDF Twig

• RDF Twig is implemented as a set of (Java) XSLT extension
functions and elements.

• The current implementation is built on top of the Jena RDF
toolkit.

13 / 29http://www.sun.com/

RDF Twig Implementation

Consider this graph:

How can this be serialized (starting at A)?

14 / 29http://www.sun.com/

How to Serialize

15 / 29http://www.sun.com/

Serialize Breadth First

16 / 29http://www.sun.com/

Serialize Depth First

17 / 29http://www.sun.com/

Serialize Breadth First Deep

18 / 29http://www.sun.com/

Serialize a Leaf

twig A shallow breadth-first tree.

dftwig A shallow depth-first tree.

branch A deep tree.

leaf A “tree” with no instantiated children.

19 / 29http://www.sun.com/

RDF Twig Terminology

Load the model:

 <xsl:variable name="model"
 select="rt:load('diagrams/bgraph.rdf')"/>

Grab a node:

 <xsl:variable name="A"
 select="rt:resource('http://uri/for/A')"/>

Turn the results into a tree:

 <xsl:variable name="tree" select="rt:twig($A)"/>

20 / 29http://www.sun.com/

RDF Twig in Action

At this point, $tree contains an XML document that can be
queried and transformed with XSLT like any other input docu-
ment.

RDF Twig in Action (Continued)

Construct a property:

 <xsl:variable name="label"
 select="rt:property('http://example.com/graph#', 'label')"/>

Find some nodes:

 <xsl:variable name="findResults"
 select="rt:find($label, 'D')"/>

Turn the results into a tree:

 <xsl:variable name="tree"
 select="rt:twig($findResults)/twig:result"/>

22 / 29http://www.sun.com/

RDF Twig in Action

• load() (and store()) RDF graphs.

• resource() gets (or creates) a single resource.

• property() gets (or creates) a property.

• twig(), dftwig(), branch(), leaf() get parts of a
graph.

23 / 29http://www.sun.com/

RDF Twig Functions

• find() finds resources (that have a property).

• get() finds resources (that are a property).

• filter(), filterNot() trim a set of resources.

• union(), intersection(), difference() perform
the obvious boolean operations on sets of resources.

24 / 29http://www.sun.com/

RDF Twig Functions (Continued)

RDF Twig now supports RDQL:

<xsl:variable name="a">
 <rq:rdql return="a">
SELECT ?a, ?b
WHERE (?a, <http://somewhere/pred1>, ?b)
AND ?b < 5
 </rq:rdql>
</xsl:variable>

This is a result tree, so you need a node-set extension to ac-
cess it.

25 / 29http://www.sun.com/

RDQL Support

Wouldn't it be better to extend XPath (XSLT?) to operate over
graphs?

Yes, probably. But RDF Twig satisfies an immediate need: to
access RDF graphs in XSLT stylesheets today.

26 / 29http://www.sun.com/

Isn't There a Better Way?

<xsl:variable name="contactType"
 select="rt:resource('http://nwalsh.com/rdf/palm#Contact')"/>

<xsl:variable name="allContacts"
 select="rt:twig(rt:find($rdf:type,
 $contactType),1)/twig:result"/>

 ...

<xsl:for-each select="$allContacts">
 <xsl:apply-templates
 select="rt:leaf(string(@rdf:about))" mode="Contact"/>
</xsl:for-each>

27 / 29http://www.sun.com/

A “Real” Example

• Deep trees can be prohibitively large.

• “Serialize on the fly” is conceptually different.

• Trying to build trees that are “just big enough” sometimes
introduces the inline/reference problem again.

• Function dispatch oddness in the current implementation.

28 / 29http://www.sun.com/

Warts

• RDF Twig: http://rdftwig.sourceforge.net/

• Saxon: http://saxon.sourceforge.net/

• Xalan Java: http://xml.apache.org/xalan-j/

• Jena: http://www.hpl.hp.com/semweb/jena

29 / 29http://www.sun.com/

References

http://rdftwig.sourceforge.net/
http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j/
http://www.hpl.hp.com/semweb/jena

	RDF Twig
	Introduction
	Introduction
	Introduction
	Observations
	The Problem
	What about RDF Serialization?
	Serialization Example
	Serialization Example (Continued)
	Working With Serialized RDF
	There's More Than One Way To Do It
	RDF Twig
	RDF Twig Implementation
	How to Serialize
	Serialize Breadth First
	Serialize Depth First
	Serialize Breadth First Deep
	Serialize a Leaf
	RDF Twig Terminology
	RDF Twig in Action
	RDF Twig in Action
	RDF Twig Functions
	RDF Twig Functions (Continued)
	RDQL Support
	Isn't There a Better Way?
	A Real Example
	Warts
	References

